New Jersey Statewide Transportation Data Model

Mark Gulbinsky November 5, 2004 NJDOT

Presenter

Mark Gulbinsky

NJDOT BIMTP/GIS Unit

Mark.Gulbinsky@dot.state.nj.us

609-530-3097

Introduction

New Jersey is in the process of implementing new transportation data model.

This presentation will explore:

- Existing data model
- Summary of key concepts of the data model
- Advantages and Impacts

New Jersey DOT

- Currently in the process of updating GIS data to include local roads and ramps
- Converted from Intergraph MGE to ESRI ArcGIS platform
- Opportune time to review database architecture and implement new data model

Existing NJDOT Data Model

- Data relate only to single-centerline
- Includes only "higher order" routes
- No local roads or ramps
- Routes are uniquely identified by a combination of Standard Route Identifier (SRI) and starting milepost

Existing NJDOT Data Model

Attribute datastored in multipleSQL tables

Linked to spatial features by SRI

	da_lanes Data Source: Straight Line Diagram		Dependant Views: v4MMS_HMMS_da_roadway v4SLD_Vldr_da_lanes		
	Index		Indexed Columns		
ı	IX_da_lanes_descr		descr		
\	IX_da_lanes_sri	sri			
	IX_da_lanes_sri_mp_start ^α	sri, mp_start			
	PK_da_lanes ^β		id		
ı	Column	Type(size)	Description		
ı	id^χ	int(4)	Unique Record Identifier		
ı	sri	varchar(20)	Standard Route Identifier		
ı	mp_start	decimal(6,3)	Beginning Milepost		
ı	mp_end	decimal(6,3)	Ending Milepost		
ı	descr	int(4)	Number of Lanes		
ı	inv_date	datetime	Date of Field Inventory		
4	inv_crew	varchar(4)	Inventory Crew		
	updt_user_name	varchar(50)	Last User to Update Record		
1	updt_date	datetime	Date/time Record was Updated		
	created_user_name	varchar(50)	User that Created the Record		
	created_date	datetime	Date/time Record was Created		

Sample of NJDOT Attribute Table

Transportation Data Model

Key Concepts

A Standard Route Identifier (SRI) will be used to identify routes

One Routing Layer called Route_Master

New Jersey SRI

17041125__

SRI Number

CCMMRRRSD

CC = county MM = municipality

RRRR = road number S = suffix D = direction

Route Hierarchy

- Routes are categorized based upon jurisdiction
- Naming is keyed to position within the Route Hierarchy
 - Coincident Sections Route segments will be broken when a route that is higher in the hierarchy runs coincident along the route

Route Hierarchy

Interstate Highways **US Highways** NJ Highways Toll Authority Routes 500 Series County Routes Other County Routes Local Roads Ramps

Components of the Transportation Data Model

- Geodatasets
- Event Tables
- Topology
- Domains

Geodatasets

- Base Layers contain background information (orthophotos, water features, etc.)
- Reference Layers Underlying geometry for other layers
- Routing Layers contain route feature classes (Route_Master)
- Cartographic Layers annotation, route shields, etc.

Geodatasets Routing Layers - Route_Master

- One main route feature class (Route_Master)
- Minimal segmentation
- Parent SRI concept
- Temporal attribution

+	Line Feature Class Route_Master			Geometry Polyline Contains M values Yes Contains Z values Yes		
Field Name	DataType	Allow Nulls	Default	Precision	Scale	Length
ObjectID	OID	No				
Shape	Geometry	No				
SRI	varchar	No				20
Route_type	varchar	No				20
Mp_Start	decimal	No		6	3	5
Mp_End	decimal	No		6	3	5
Street_Name	varchar	Yes				50
Measured_Length	decimal	Yes		6	3	5
Parent_SRI	varchar	No				20
Parent_Mp_Start	decimal	No		6	3	5
Parent_Mp_End	decimal	No		6	3	5
Active	varchar	No				1
Year_Active	varchar	No				4
Year_Retired	varchar	No				4

Event Tables

Individual tables for each attribute

- All attribute data can be referenced on one road network (Route_Master)
- Contains 2-3 mandatory columns
 - SRI (for point and linear tables)
 - MP_Start (for point and linear tables)
 - MP_End (for linear tables only)

Topology

- Used to manage spatial relationships between geographic features
- Enables sharing of geometry between features and feature classes

Domains

- Tables that contain allowable sets of values for other tables
 - Coded value domains
 - Range domains

Coded value domai pave_type Description: pavement Split policy: Default Value Merge policy: Default Value Va	e_type ription: pavement type list policy: Default Value				
Code	Description				
1	Concrete				
2	Bituminous				
3	Brick or Block				
4	Gravel				
5	Dirt				

Sample Coded Value Domain

The Geodatabase

Centerlines

Single Centerline

- Simpler
- Does not always match real-world conditions
- Mileposting can be inaccurate
 - Linear Referencing can be inaccurate

Dual Centerline

- More complex
- More closely matches real-world conditions
- Mileposting is more accurate
 - Linear referencing becomes more accurate

Single Centerline

Dual Centerline

Old vs New

Mileposting Comparison Single vs. Dual Centerlines

Divided Routes

Dual Centerline
Model requires
rules for
determining when
to create a divided
route

Data Collection

Digitized On Screen

Impacts of the New Transportation Data Model

DOT system databases will need updating

Learning curve associated with new model

Impacts of NJDOT Data Model

- Data collection needed for ramps and secondary direction centerlines and attributes
- SLD application will need updating

Advantages of the Transportation Data Model

- More intuitive real world
- Linear referencing more accurate
- Spatial data is more comprehensive: now includes local roads and ramps

Conclusions

Increased accuracy of spatial data

Increased accuracy of linear referencing

More user-friendly

Better decision support

Questions

Mark Gulbinsky
BIMTP/GIS Unit

mark.gulbinsky@dot.state.nj.us

609-530-3097

